

Definitions and Abbreviations

The following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water

system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred

and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL:

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG:

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL:

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum residual disinfectant level goal or MRDLG:

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control

microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion

ppm: milligrams per liter or parts per million

ppq parts per quadrillion, or picograms per liter (pg/L)

ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

This is your water quality report for January 1 to December 31, 2023. For more information regarding this report contact:

Bryan Creed at (972)961-4870

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (972) 771-6228.

CITY OF HEATH provides Purchased Surface Water from Lake Lavon located in Collin County.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

CITY OF HEATH purchases water from CITY OF ROCKWALL. CITY OF ROCKWALL provides purchase surface water from NTMWD, Lake Lavon located in Collin County.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023

			Re	egulated Con	taminants			
Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Bromate	2023	Levels lower than detect level	0 - 0	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance

sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2023	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2023	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2023	0.048	0.041 - 0.048	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2023	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2023	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.

Chromium	2023	Levels	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills;
		lower than						erosion of natural deposits.
		detect level						
Cyanide	2023	199	28 - 199	0 - 0	200	ppb	No	Discharge from steel/metal factories Discharge from plastics and fertilizer factories.
Fluoride	2023	0.968	0.537 - 0.968	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teet discharge from fertilizer and aluminu factories.
Mercury	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharg from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2023	0.790	0.067 - 0.790	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion on the natural deposits.
Selenium	2023	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and meta refineries; erosion of natural deposi discharge from mines.
Thallium	2023	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, ar leaching from ore-processing sites; drug factories.
Nitrate Advisory: Nitrate in	drinking water at levels	ahaya 10 nam is a haa	Ith risk for infants	of loss than six ma	nths of ago High ni	trata lavale in drink	ing water can cause	hluo

care provider.								
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

NTMWD Wylie Water Treatment Plants

Water Quality Data for Year 2023 (Cont.)

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on ro crops.
Alachlor	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on ro crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide
Atrazine	2023	0.2	0.1 - 0.2	3	3	ppb	No	Runoff from herbicide used on ro crops.
Benzo (a) pyrene	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water sto tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rig of way.
Di (2-ethylhexyl) adipate	2023	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories

Di (2-ethylhexyl) phthalate	2023	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapple and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2023	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refinerie
Heptachlor	2023	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2023	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2023	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2023	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and garden
Methoxychlor	2023	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, a livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2023	0.12	0.06 - 0.12	4	4	ppb	No	Herbicide runoff.

Toxaphene	2023	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic	Collection	Highest Level	Range of Levels	MGIG	MCL	ll-site.	Violetien	Libeb Course of Contamination
Contaminants 1, 1, 1 - Trichloroethane	2023	Levels lower than detect level	Detected 0 - 0	MCLG 200	200	Units ppb	Violation No	Likely Source of Contamination Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2023	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.

NTMWD Wylie Water Treatment Plants Water Quality Data for Year 2023 (Cont.)

Volatile Organic	Collection	Highest Level	Range of Levels					
Contaminants	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2023	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2023	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2023	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2023	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2023	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2023	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2023	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.

trans - 1, 2 - Dicholoroethylene	2023	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.
				Turbidit	у			
		Limit (Treatment Techn	ique)		Level Detect	ted	Violation	Likely Source of Contamination
Highest single measurement	:	1 NTU			0.73		No	Soil runoff.
Lowest monthly percentage limit		0.3 NTU			98.0%		No	Soil runoff.
NOTE: Turbidity is a measure cloudiness of the water cause particles. We monitor it becaudidator of water quality and effectiveness	ed by suspended use it is a good							
of our filtration.								
Maximum Residual Disinfect	tant Level							
Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Dioxide	2023	0.01	0	0.59	0.80	0.80	ppm	Disinfectant.
Chlorite	2023	0.16	0	0.88	1.00	N/A	ppm	Disinfectant.
NOTE: Water providers are r maintain a minimum chloring residual level of 0.5 parts per for systems disinfecting with an annual	e disinfection million (ppm) chloramines and	1	I					
average chlorine disinfection ppm.	residual level of betv	veen 0.5 ppm and 4						
Total Organic Carbon								
The percentage of Total Orga	I anic Carbon (TOC) rem	noval was measured eac	h month and the sy	stem met all TOC re	moval requiremen	nts set.		
Cryptosporidium and Giardia	a							

Contaminants	Collection Date	Highest Level Detected	Range of Le	vels Detected	Units		Likely Source of Contamination
Cryptosporidium	2023	0	0 - 0		(Oo) Cysts/L		Human and animal fecal waste. Naturally present in the environme
Giardia	2023	0.18	0.09 - 0.18		(Oo) Cysts/L		Human and animal fecal waste. Naturally present in the environme
NOTE: Levels detected are for	or source water, not for	drinking water. No cr	ryptosporidium or g	iardia were found in drinking wa	ter.		
NTMWD Wylie Water Treat	ment PlantsWater Qua	lity Data for Year 202	23 (Cont.)			<u></u>	
Lead and Copper	-			•	- 1	•	
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Lead		15	1.29	0	dqq		Corrosion of household plumbing systems; erosion of natural depos
Copper		1.30	0.725	0	ppm		Erosion of natural deposits; leachi from wood preservatives; corrosion household plumbing systems.
LEAD AND COPPER RULE: Th	 e Lead and Copper Rule	protects public healt	th by minimizing lea	d and copper levels in drinking w	 vater, primarily by reducing	water corrosivity.	
Lead and Copper enter drink	ing water mainly from	corrosion of plumbing	materials containir	ng lead and copper.			
ADDITIONAL HEALTH INFOR	MATION FOR LEAD: If p	resent, elevated leve	ls of lead can cause	serious health problems, especi	ally for pregnant women ar	nd young children. Le	ead
in drinking water is primarily	from materials and cor	mponents associated	with service lines ar	nd home plumbing. [Customer] is	s responsible for providing	high quality drinking	g water,
	<u> </u>			has been sitting for several hour	* * * * * * * * * * * * * * * * * * * *	<u>.</u>	<u>'</u>
flushing your tap for 30 seco	nds to 2 minutes before	e using water for drin	king or cooking. If yo	ou are concerned about lead in y	our water, you may wish t	o have your water to	ested.
Information on lead in drink	ing water, testing meth	ods, and steps you ca	n take to minimize o	exposure is available from the Sa	afe Drinking Water Hotline	or	
at http://www.epa.gov/safe	ewater/lead.						
Secondary and Other Const	tuents Not Regulated						
Contaminants	Collection	Highest	Range of Le	vels Detected	Units		Likely Source of Contamination

.1 .	2022			1	- · · · · · · · ·
Aluminum	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Calcium	2023	69.8	26.5 - 69.8	ppm	Abundant naturally occurring eleme
Chloride	2023	107	30 - 107	ppm	Abundant naturally occurring eleme used in water purification; by-produ of oil field activity.
Iron	2023	0.516	0.061 - 0.516	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2023	9.77	4.90 - 9.77	ppm	Abundant naturally occurring eleme
Manganese	2023	0.158	0.0068 - 0.158	ppm	Abundant naturally occurring eleme
Nickel	2023	0.0048	0.0047 - 0.0048	ppm	Erosion of natural deposits.
рН	2023	9.17	6.39 - 9.17	units	Measure of corrosivity of water.
Silver	2023	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2023	95.4	26.5 - 95.4	ppm	Erosion of natural deposits; by- product of oil field activity.
Sulfate	2023	171	76.8 - 171	ppm	Naturally occurring; common industrial by-product; by-product of field activity.
Total Alkalinity as CaCO3	2023	139	51 - 139	ppm	Naturally occurring soluble minera salts.
Total Dissolved Solids	2023	492	263 - 492	ppm	Total dissolved mineral constituent water.
Total Hardness as CaCO3	2023	312	82 - 312	ppm	Naturally occurring calcium.
Zinc	2023	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the met industry.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact **Bryan Creed at (972) 961-4870**].

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	2		0	N	Naturally present in the environment.

§290.272(g)(9)(A) Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

§290.272(g)(9)(B) During the past year we were required to conduct one Level 1 assessment. One Level 1 assessment was completed. In addition, we were required to take one corrective actions and we completed one of these actions.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2023	1.3	1.3	0.725	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing
Lead	2023	0	15	1.29	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

2023 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2023	21	12.1 – 27	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{*}The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2023	40	26.5 – 52.8	No goal for the	80	ppb	N	By-product of drinking water disinfection.
				total				

^{*}The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen	2023	0.204	0.204 - 0.204	10	10	ppm		Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
	2023	1.9	1.0 - 4.0	4	4	ppm	N	Water additive used to control microbes.

UCMR5

Unregulated Contaminant	Collection Date	Average Level (μg/L)	Range of Levels Detected (µg/L)	Health-Based Reference Concentration (μg/L)	Health Information Summary
PFBS	2023	0.0034	0.0034-0.0035		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
PFHxA	2023	0.0049	0.0045-0.0055		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
PFPeA	2023	0.0055	0.0047-0.0059		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
6:2 FTS	2023	0.0074	0.0059-0.0088		This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.

PWSs are required to notify customers through Tier 3 Public Notification (PN) about the availability of all UCMR results no later than 12 months after they are known by the PWS. Community water systems (CWSs) are also required to report UCMR results in their annual Consumer Confidence Report (CCR) when unregulated contaminants are found (i.e., measured at or above minimum reporting levels [MRLs]). CWSs must report the average and range of the prior year's monitoring results. If timing and delivery requirements are met, CWSs may include their PN within their CCR, also known as an annual drinking water quality report, which is to be delivered to all billing customers each year by July 1. EPA resources for PWSs are available on the CCR and PN Compliance Help webpages

6:2 FTS	0.0088	11/20/2023
PFBS	0.0034	11/20/2023
PFHxA	0.0055	11/20/2023
PFPeA	0.0058	11/20/2023